

Robust Fine-tuning of Zero-shot Models via Variance Reduction

Beier Zhu, Jiequan Cui, Hanwang Zhang

ID-OOD Trade-offs

- Fine-tuning zero-shot models often compromises OOD performance. (excels in ID but lags in OOD compared to ★).
- Recently, ensemble-based models (ESMs) have shown great potential in addressing the ID-OOD dilemma.
- However, ESMs cannot fully solve the ID-OOD trade-offs: they achieve peak performance for ID and OOD accuracy at different mixing coefficients (best ID at $\alpha=0.5$, best OOD at $\alpha=0.3$.)

Intriguing Finding

- Zero-Shot Failure (ZSF) set: for each training sample, if the fine-tuned model correctly predicts the label while the zero-shot model fails, we collect its feature representation.
- We measure the distance of each test sample to the ZSF set. Based on this distance, test samples are grouped into bins, and we compute the ratio of fine-tuned accuracy to zero-shot accuracy $\frac{Acc_{ft}}{Acc_{rs}}$.
- **Finding**: the ratio monotonically decreases as distance increases.

Method

Core Idea: using the distance to assign weights in ensembling -- a smaller distance results in a higher weight for the fine-tuned model, and vice versa.

Given: Training dataset \mathcal{D} , a zero-shot model f_{zs} , and a fine-tuned model f_{ft} .

Step 1 (Identification). We build the zero-shot failure set as

$$\mathcal{V} = \{ \mathbf{v}_i \text{ s. t. } y_i = \text{pred}(f_{\text{ft}}(\mathbf{x}_i)) \text{ and } y_i \neq \text{pred}(f_{\text{zs}}(\mathbf{x}_i)) \}$$

where $\{\mathbf{x}_i, y_i\} \in \mathcal{D}$, \mathbf{v}_i is the feature representation of \mathbf{x}_i .

Step 2 (Distance Calculation). The distance of a test sample to $\mathcal V$ is defined as the l_2 distance to the k-th nearest neighbor in $\mathcal V$

$$d(\mathbf{x}) = \left\| \mathbf{v} - \mathbf{v}_{(k)} \right\|_{2}$$

Step 3 (Sample-Wise Ensembling). We implement sample-wise output-space in the form:

$$\widehat{\mathbb{P}}_{\mathrm{vrf}}(y|\mathbf{x}) = \omega(\mathbf{x})\widehat{\mathbb{P}}_{\mathrm{ft}}(y|\mathbf{x}) + (1 - \omega(\mathbf{x}))\widehat{\mathbb{P}}_{\mathrm{zs}}(y|\mathbf{x}),$$

where $\omega(\mathbf{x}) = \sigma(-(d(\mathbf{x}) - a)/b)$, $\sigma(\cdot)$ is the sigmoid function and a, b are two hyperparameters.

Justification

The probability output of a classifier parameterized by θ can be expressed as:

$$\widehat{\mathbb{P}}(y|\mathbf{x};\theta) = \mathbb{P}(y|\mathbf{x}) + \eta_y(\mathbf{x})$$

where $\mathbb{P}(y|\mathbf{x})$ denotes the true *a posterior and* $\eta_y(\mathbf{x})$ is the error term. The expected error of the estimated classifier is:

$$E = \frac{\mathbb{V}[\eta_{\mathcal{Y}}(\mathbf{x})]}{S},$$

where s is a constant factor related to the derivative of the true a posterior distribution and is independent of the trained model, and $\mathbb{V}[\eta_{v}(\mathbf{x})]$ is the variance.

Let $g_{zs}(\cdot)$ and $g_{ft}(\cdot)$ be two functions that produce weights for ensembling the models. Subject to the constraint that $g_{zs}(\mathbf{x}) + g_{ft}(\mathbf{x}) = 1$, the variance of our model can be expressed as:

$$\mathbb{V}[\eta_{\mathrm{vrf}}(\mathbf{x})] = g_{\mathrm{zs}}(\mathbf{x})^2 \mathbb{V}[\eta_{\mathrm{zs}}(\mathbf{x})] + g_{\mathrm{ft}}(\mathbf{x})^2 \mathbb{V}[\eta_{\mathrm{ft}}(\mathbf{x})].$$

To obtain the minimal variance, the optimal weight function should be

$$g_{\rm ft}(\mathbf{x}) = \frac{\mathbb{V}[\eta_{\rm zs}(\mathbf{x})]}{\mathbb{V}[\eta_{\rm zs}(\mathbf{x})] + \mathbb{V}[\eta_{\rm ft}(\mathbf{x})]} = \frac{E_{\rm zs}}{E_{\rm zs} + E_{\rm ft}} \propto \frac{\text{Acc}_{\rm ft}}{\text{Acc}_{\rm zs}}$$

Results

Table 1: Accuracy of various methods on ImageNet and derived distribution shifts for CLIP ViT-B/32

Method	IN	IN-V2	Distri IN-Sketch	bution s IN-A		ObjectNet	Avg shifts
Zero-shot [20] Linear classifier [20]	63.3 75.4	55.9 63.4	42.3 38.8	31.5 26.1	69.3 58.7	43.5 41.5	48.5
E2E-FT [28]	76.2	64.2	38.7	21.0	57.1	40.1	44.2
+ Weight-space ensemble [28]+ Output-space ensemble	77.9	67.2	45.1	28.8	66.4	45.1	50.5
	77.3	66.0	44.2	27.1	68.4	44.4	50.0
+ VRF (ours)	77.6	66.7	47.0	29.2	70.9	46.3	52.0
Δ	+0.3		+2.8	+2.1	+2.5	+1.9	+2.0
LP-FT [15]	76.9	64.8	39.9	25.7	69.9	42.6	48.6
+ Weight-space Ensemble [28]+ Output-space Ensemble	78.0	67.0	44.8	31.2	65.8	46.1	51.0
	77.8	66.3	44.0	29.5	66.2	45.5	50.3
+ VRF (ours)	77.8	66.7	46.1	31.0	70.0	46.3	51.8
Δ	+0.0		+2.1	+1.5	+3.8	+0.8	+1.5

We observe that our VRF boosts the accuracy of fine-tuned models, including ensembling baseline models, across five ImageNet distribution shifted datasets, while maintaining or improving the ImageNet in-distribution performance.