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ID-OOD Trade-offs Justification
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Y R L 1L/ * Fine-tuning zero-shot models often compromises OOD The probability output of a classifier parameterized by 6 can be expressed as:
4§ t)oef;mance. (I excels in ID but lags in OOD compared P(y|x; 6) = P(y|x) + 7, (X)
- | where P(y|x) denotes the true a posterior and 71,,(X) is the error term. The expected error of the
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I : L , , estimated classifier is:
£ | great potential in addressing the ID-OOD dilemma. Vi, (X)]
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0561 T et tb accmcy with acos | » However, ESMs ¢ cannot fully solve the ID-OOD trade-offs: E = s
o | ... Best OOD accuracy with a=0.3 : .
g | E e 3 thede?Ch'eve F.)e'ak perf}::rpance :)or III)Dand OEDOaSCCEracy where s is a constant factor related to the derivative of the true a posterior distribution and is
G 53{ & VRFlours i at different mixing coefficients (best ID at a = 0.5, best independent of the trained model, and W[ny(x)] is the variance.
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ImageNet Accuracy (ID) Let g,<(+) and g¢ () be two functions that produce weights for ensembling the models. Subject to
the constraint that g,.(X) + g7 (x) = 1, the variance of our model can be expressed as:

V[77vrf(x)] — Yzs (X)ZV[UZS (x)] + gft(X)ZV[Uft(X)]-
To obtain the minimal variance, the optimal weight function should be
« Zero-Shot Failure (ZSF) set: for each training sample, if the V[1,s(x)] Eys o ACCyt

fe(X) = =
fine-tuned model correctly predicts the label while the It V[n,sX)] + V[ne(x)] E;s+ Exe  Accyg
zero-shot model fails, we collect its feature representation.
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§ 1.2 * We measure the distance of each test sample to the ZSF R It
:gt set. Based on this distance, test samples are grouped into esuits
2 1.0 bins, and we compute the ratio of fine-tuned accuracy to
5 AccCr
E) 05 zero-shot accuracy Accy.’ Table 1: Accuracy of various methods on ImageNet and derived distribution shifts for CLIP ViT-B/32
o Einding- ! ! - Distribution shifts Avg
| | | | , !:mdmg. the ratio monotonically decreases as distance Method IN | ;(NoV2 IN.Sketch IN.A  IN.R ObjectNet | shifts
Distance to ZSF set (d(x)) Zero-shot [20] 63.3 | 559 42.3 315 69.3 43.5 48.5
Method Linear classifier [20] 75.4 | 63.4 38.8 26.1 58.7 41.5 45.7
E2E-FT [28] 76.2 | 64.2 38.7 21.0 57.1 40.1 44.2
. e : : : : TN : : : : + Weight-space ensemble [28] 77.9 | 67.2 45.1 28.8 664 45.1 50.5
Core Idga. using the distance t? assign weights in ensembling -- a smaller distance results in a higher weight + Output.space ensemble 13| €60 119 271 684 14 0.0
for the fine-tuned model, and vice versa. + VRF (ours) 77.6 | 66.7 47.0 29.2 70.9 46.3 52.0
Given: Training dataset D, a zero-shot model f,,, and a fine-tuned model f. A +0.3 | +0.7 +2.8 +2.1  +2.5 +1.9 +2.0
Step 1 (Identification). We build the zero-shot failure set as LP-FT [15] 76.9 | 64.8 390 2757 699 42.6 48.6
VYV ={v:s.t. v: = pred x:)) and v: = vred X : + Weight-space Ensemble [28] 78.0 | 67.0 44.8 312 65.8 46.1 51.0
. (vi s.t.y; = pred(f( . ) vi # pred(fos(x)))} + Output-space Ensemble 778 | 66.3 440 295 662 455 | 503
where {X;,y;} € D, v; is the fea.ture representation of x;. | | | + VRF (ours) 778 | 667 461 310 700 463 | 518
Step 2 (Distance Calculation). The distance of a test sample to V is defined as the [, distance to the k-th A +0.0 | +0.4 +2.1 +15 +3.8 +0.8 +1.5
nearest neighbor in V
d(x) = HV - V(k)”z We observe that our VRF boosts the accuracy of fine-tuned models, including
Step 3 (Sample-Wise Ensembling). We implement sample-wise output-space in the form: ensembling baseline models, across five ImageNet distribution shifted datasets, while
Pore(y]%) = 0 @) P (y]x) + (1 — w(x))f@zs(yb(), maintaining or improving the ImageNet in-distribution performance.

where w(x) = a(—(d(x) — a)/b), a(+) is the sigmoid function and a, b are two hyperparameters.



