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• Fine-tuning zero-shot models often compromises OOD 
performance. (      excels in ID but lags in OOD compared 
to      ). 

• Recently, ensemble-based models (ESMs) have shown 
great potential in addressing the ID-OOD dilemma.

• However, ESMs    cannot fully solve the ID-OOD trade-offs: 
they achieve peak performance for ID and OOD accuracy 
at different mixing coefficients (best ID at 𝛼 = 0.5, best 
OOD at 𝛼 = 0.3.)
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Core Idea: using the distance to assign weights in ensembling -- a smaller distance results in a higher weight
for the fine-tuned model, and vice versa.
Given: Training dataset 𝒟, a zero-shot model 𝑓!", and a fine-tuned model 𝑓#$.
Step 1 (Identification). We build the zero-shot failure set as

𝒱 = {𝐯% s. t. 𝑦% = pred 𝑓#$ 𝐱% and 𝑦% ≠ pred 𝑓!" 𝐱% }
where 𝐱% , 𝑦% ∈ 𝒟, 𝐯% is the feature representation of 𝐱%.

Step 2 (Distance Calculation). The distance of a test sample to 𝒱 is defined as the 𝑙& distance to the k-th
nearest neighbor in 𝒱

𝑑 𝐱 = 𝐯 − 𝐯(() &
Step 3 (Sample-Wise Ensembling). We implement sample-wise output-space in the form:

=ℙ*+# 𝑦 𝐱 = 𝜔 𝐱 =ℙ#$ 𝑦 𝐱 + 1 − 𝜔 𝐱 =ℙ!" 𝑦 𝐱 ,
where 𝜔 𝐱 = 𝜎(−(𝑑 𝐱 − 𝑎)/𝑏), 𝜎(H) is the sigmoid function and 𝑎, 𝑏 are two hyperparameters.

The probability output of a classifier parameterized by 𝜃 can be expressed as:
=ℙ 𝑦 𝐱; 𝜃 = ℙ 𝑦 𝐱 + 𝜂,(𝐱)

where ℙ 𝑦 𝐱 denotes the true a posterior and  𝜂,(𝐱) is the error term. The expected error of the 
estimated classifier is:

𝐸 =
𝕍[𝜂,(𝐱)]

𝑠
,

where 𝑠 is a constant factor related to the derivative of the true a posterior distribution and is 
independent of the trained model, and 𝕍[𝜂,(𝐱)] is the variance. 

Let 𝑔!"(H) and 𝑔#$(H) be two functions that produce weights for ensembling the models. Subject to 
the constraint that 𝑔!" 𝐱 + 𝑔#$ 𝐱 = 1, the variance of our model can be expressed as:

𝕍 𝜂*+# 𝐱 = 𝑔!" 𝐱 &𝕍 𝜂!" 𝐱 + 𝑔#$ 𝐱 &𝕍 𝜂#$ 𝐱 .
To obtain the minimal variance, the optimal weight function should be

𝑔#$ 𝐱 =
𝕍 𝜂!" 𝐱

𝕍 𝜂!" 𝐱 + 𝕍 𝜂#$ 𝐱
=

𝐸!"
𝐸!" + 𝐸#$
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Results

We observe that our VRF boosts the accuracy of fine-tuned models, including
ensembling baseline models, across five ImageNet distribution shifted datasets, while
maintaining or improving the ImageNet in-distribution performance.
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• Zero-Shot Failure (ZSF) set: for each training sample, if the 
fine-tuned model correctly predicts the label while the 
zero-shot model fails, we collect its feature representation.

• We measure the distance of each test sample to the ZSF 
set. Based on this distance, test samples are grouped into 
bins, and we compute the ratio of fine-tuned accuracy to 
zero-shot accuracy -..!"

-..#$
.

• Finding: the ratio monotonically decreases as distance 
increases. 


