

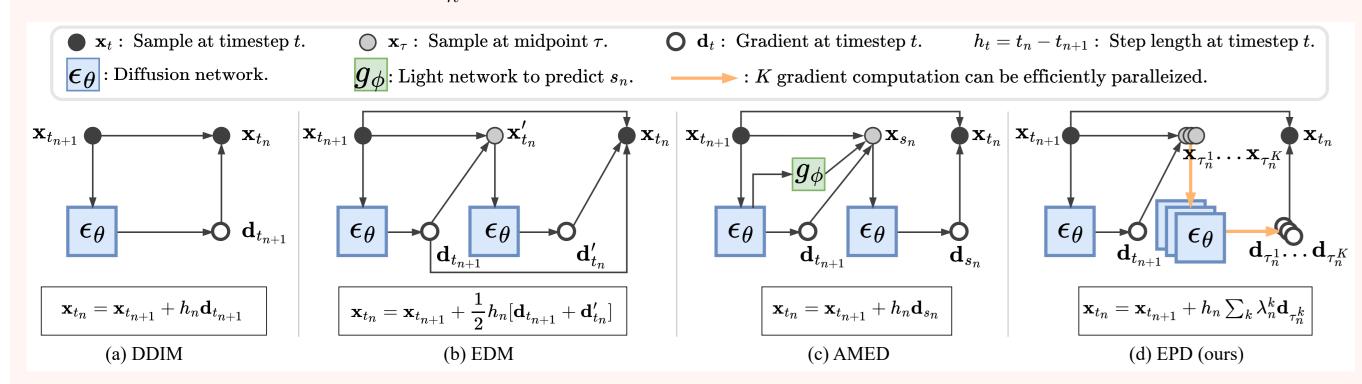
Distilling Parallel Gradients for Fast ODE Solvers of Diffusion Models

Ruoyu Wang² Tong Zhao² Hanwang Zhang¹ Beier Zhu ¹

Chi Zhang²

²Westlake University

1. Background


Diffusion models (DMs) have become a leading paradigm in generative modeling. DMs operate by gradually refining a noisy input through a denoising process, producing high-fidelity outputs. However, the multi-step sequential denoising process introduces substantial latency. Recent efforts on accelerating DMs typically fall into three categories.

- Solver-based methods develop fast numerical solvers to reduce sampling steps. However, inherent truncation errors lead to significant quality degradation when the number of function evaluations (NFE) is low (e.g., < 5).
- Distillation-based methods distill student DMs to generate high-quality samples within a minimal number of NFEs, often as low as one. However, this requires extensive training with carefully designed objectives, making the distillation process computationally expensive.
- Parallelism-based methods accelerate diffusion models by trading computation for speed. While promising, this direction under low NFEs remains underexplored.

2. Motivation

At a high level, various existing ODE solvers utilize gradients at different timesteps to approximate the ODE solution with varying accuracy. As shown in Figure below:

- DDIM [5] adopts the rectangle rule that uses the gradient at the start point $\mathbf{d}_{t_{n+1}}$.
- EDM [1] adopts the trapezoidal rule that averages the gradients of the start point $\mathbf{d}_{t_{n+1}}$ and the end point \mathbf{d}'_{t_n} .
- AMED [6] optimizes a small network g_{ϕ} to output an intermediate timestep $s_n \in (t_n, t_{n+1})$ to compute the gradient \mathbf{d}_{s_n} .

Compared to DDIM, EDM and AMED introduce an additional timestep for gradient computation (t_n and s_n), leading to improved integral estimation. The key motivation behind our EPD-Solver is to further leverage multiple timesteps:

- Compute the gradients at K intermediate timesteps in parallel $\mathbf{d}_{\tau_n^1}, \dots, \mathbf{d}_{\tau_n^K}, \tau_n^k \in (t_{n+1}, t_n)$.
- Combine the K gradients via **convex aggregation**, yielding a more precise integral approximation $(\sum_k \lambda_n^k \mathbf{d}_{\tau_n^k})$
- As the computation of gradients are independent, the latency remains unchanged.

3. Theoretical Justification

¹Nanyang Technological University

The use of gradients estimated at multiple timesteps for improved integral approximation can be theoretically justified by the following mean value theorem for vector-valued functions [4]:

When f has values in an n-dimensional vector space and is continuous on the closed interval [a, b]and differentiable on the open interval (a, b), we have

$$f(b) - f(a) = (b - a) \sum_{k=1}^{n} \lambda_k f'(c_k),$$
 (1)

for some $c_k \in (a, b), \lambda_k \geq 0$, and $\sum_{k=1}^n \lambda_k = 1$.

In the context of denoising process, the function outputs an d-dimensional vector as $\mathbf{x} \in \mathbb{R}^d$. The exact integral of $\epsilon_{\theta}(\mathbf{x}_t,t)$ over the interval $[t_n,t_{n+1}]$ can be expressed as a simplex-weighted combination of gradients evaluated at d intermediate points, scaled by the interval length $h_n =$ $t_n - t_{n+1}$, as formulated in our EPD-Solver.

4. Method: EPD-Solver

Definition of parameters and inference

We define the parameters at step n as $\Theta_n = \{\tau_n^k, \lambda_n^k, \delta_n^k, o_n\}_{k=1}^K$:

- $\tau_n^k \in (t_{n+1}, t_n)$: k-th intermediate timestep.
- $\lambda_n^k \ge 0, \sum_k \lambda_n^k = 1$: combining weights.
- δ_n^k : k-th timestep perturbation.
- o_n : scaling perturbation. δ_n^k and o_n are proposed to mitigate exposure bias [2].

Update rule:

$$\mathbf{x}_{t_n} = \mathbf{x}_{t_{n+1}} + (1 + o_n)h_n \sum_{k=1}^K \lambda_n^k \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{\tau_n^k}, \tau_n^k + \delta_n^k)$$

Distillation-based optimization

- Generating accurate teacher trajectory: Given a student time schedule with N steps $\mathcal{T}_{\mathsf{stu}} = \{t_0 = t_{\min}, ..., t_N = t_{\max}\}$, we insert M intermediate steps between t_n and t_{n+1} , i.e., $\mathcal{T}_{tea} = \{t_0, ..., t_n, t_n^1, ..., t_n^M, t_{n+1}, ..., t_N\}$, The teacher trajectories are generated by any ODE solver (e.g, DPM-Solver) and store the reference states as $\{\mathbf{y}_{t_n}\}_{n=0}^N$.
- Generate student trajectory: We sample student trajectory $\{\mathbf{x}_{t_n}\}_{n=0}^N$ with the same initial noise \mathbf{y}_{t_N} , and use the update rule with the parameters $\{\Theta_n\}_{n=1}^N$.
- Alignment: We align the two trajectories w.r.t some distance measurement dist (\cdot, \cdot) : $\mathcal{L}_n(\Theta_{1:n}) = \operatorname{dist}(\mathbf{x}_{t_n}, \mathbf{y}_{t_n}).$

EPD-Plugin to existing solvers

EPD-Solver augments existing solvers by substituting their gradient estimation with parallel branches. We illustrate this using the multi-step iPNDM [3]; see the main paper for details.

5. Experiments

Method	(Para.) NFE				
	3	5	7	9	
Single-step DDIM Solver-2 AMED-Solver	93.36	49.66	27.93	18.43	
	306.2	97.67	37.28	15.76	
	155.7	57.30	10.20	4.98	
	18.49	7.59	4.36	3.67	
DPM-Solver++(3M) Step UniPC iPNDM AMED-Plugin	110.0	24.97	6.74	3.42	
	109.6	23.98	5.83	3.21	
	47.98	13.59	5.08	3.17	
	10.81	6.61	3.65	2.63	
ParaDiGMS EPD-Solver (ours) EPD-Plugin (ours)	51.03	18.96	7.18	6.19	
	10.40	4.33	2.82	2.49	
	<u>10.54</u>	<u>4.47</u>	<u>3.27</u>	2.42	

(a) Unconditiona	CIFAR10 32 ×
------------------	--------------

Method		(Para.) NFE			
			5	7	9
Single-step	DDIM EDM DPM-Solver-2 AMED-Solver	78.21 356.5 266.0 47.31	116.7		21.0 28.8 9.26 6.32
Multi-step	DPM-Solver++(3M) UniPC iPNDM AMED-Plugin	86.43 45.98	22.51 21.40 17.17 12.49	8.44 7.44 7.79 6.64	4.77 4.47 4.58 4.24
Parallel	ParaDiGMS EPD-Solver (ours) EPD-Plugin (ours)	43.64 21.74 19.02	20.92 7.84 <u>7.97</u>	16.39 4.81 <u>5.09</u>	8.82 3.82 3.53
		_			

(b) Unconditional **FFHQ** 64×64

Method		(Para.) NFE			
	I TICLIIUU _		5	7	9
Single-step	DDIM EDM DPM-Solver-2 AMED-Solver	82.96 249.4 140.2 38.10	89.63	27.46 37.65 12.03 6.66	19.2° 16.7° 6.64 5.44
Multi-step	DPM-Solver++(3M) UniPC iPNDM AMED-Plugin	91.38 58.53	25.49 24.36 18.99 13.83	10.14 9.57 9.17 7.81	6.48 6.34 5.91 5.60
Parallel	ParaDiGMS EPD-Solver (ours) EPD-Plugin (ours)	41.11 18.28 <u>19.89</u>	17.27 6.35 8.17	13.67 <u>5.26</u> 4.81	6.38 4.27 4.02

(c) Conditional **ImageNet** 64×64

Method .		(Para.) NFE				
	3	5	7	9		
DDIM EDM DPM-Solver-2 AMED-Solver	86.13 291.5 210.6 58.21			13.26 35.67 9.61 5.65		
DPM-Solver++(3M) UniPC iPNDM AMED-Plugin	111.9 112.3 80.99 101.5	23.15 23.34 26.65 25.68	8.87 8.73 13.80 8.63	6.45 6.61 8.38 7.82		
ParaDiGMS EPD-Solver (ours) EPD-Plugin (ours)	100.3 13.21 <u>14.12</u>	31.68 7.52 8.26	15.85 <u>5.97</u> 5.24	8.56 <u>5.01</u> 4.51		
	DDIM EDM DPM-Solver-2 AMED-Solver DPM-Solver++(3M) UniPC iPNDM AMED-Plugin ParaDiGMS EPD-Solver (ours)	DDIM 86.13 EDM 291.5 DPM-Solver-2 210.6 AMED-Solver 58.21 DPM-Solver++(3M) 111.9 UniPC 112.3 iPNDM 80.99 AMED-Plugin 101.5 ParaDiGMS 100.3 EPD-Solver (ours) 13.21	Method35DDIM86.1334.34EDM291.5175.7DPM-Solver-2210.680.60AMED-Solver58.2113.20DPM-Solver++(3M)111.923.15UniPC112.323.34iPNDM80.9926.65AMED-Plugin101.525.68ParaDiGMS100.331.68EPD-Solver (ours)13.217.52	Method 3 5 7 DDIM 86.13 34.34 19.50 EDM 291.5 175.7 78.67 DPM-Solver-2 210.6 80.60 23.25 AMED-Solver 58.21 13.20 7.10 DPM-Solver++(3M) 111.9 23.15 8.87 UniPC 112.3 23.34 8.73 iPNDM 80.99 26.65 13.80 AMED-Plugin 101.5 25.68 8.63 ParaDiGMS 100.3 31.68 15.85 EPD-Solver (ours) 13.21 7.52 5.97		

(d) Unconditional **LSUN Bedroom** 256×256

See the main paper for qualitative results.

References

- [1] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based generative models. In NeurIPS,
- [2] Mingxiao Li, Tingyu Qu, Ruicong Yao, Wei Sun, and Marie-Francine Moens. Alleviating exposure bias in diffusion models through sampling with shifted time steps. In ICLR, 2024.
- [3] Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on manifolds. In ICLR, 2022.
- [4] Robert M McLeod. Mean value theorems for vector valued functions. Proceedings of the Edinburgh Mathematical Society, 14(3):197–209,
- [5] Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In ICLR, 2021.
- [6] Zhenyu Zhou, Defang Chen, Can Wang, and Chun Chen. Fast ode-based sampling for diffusion models in around 5 steps. In CVPR,